
$\left.\begin{array}{c|c|l|l|l|}\hline \text { STANDARD } & & \begin{array}{l}\text { STANDARD DESCRIPTION }\end{array} & \begin{array}{l}\text { TABE } 11 / 12 \\ \text { LEVEL }\end{array} \\ \hline \text { EMPHASIS } \\ \text { LEVEL }\end{array}\right]$

	STANDARD	STANDARD DESCRIPTION	$\begin{aligned} & \text { AE-CCR } \\ & \text { LEVEL } \end{aligned}$	TABE 11/12 EMPHASIS LEVEL
	8.EE. 1	Know and apply the properties of integer exponents to generate equivalent numerical expressions. For example, $3^{\wedge} 2 \times 3^{\wedge}-5=3^{\wedge}-3=1^{*}-/ 3^{\wedge} 3=1 / 27$.	D	Low
	7.EE. 2	Understand that rewriting an expression in different forms in a problem context can shed light on the problem and how the quantities in it are related. For example, a + $0.05 a=1.05 a$ means that increase by 5% is the same as multiply by 1.05 .	D	Low
	8.EE. 2	Use square root and cube root symbols to represent solutions to equations of the form $x^{\wedge} 2=p$ and $x^{\wedge} 3=p$, where p is a positive rational number. Evaluate square roots of small perfect squares and cube roots of small perfect cubes. Know that sqrt(2) is irrational.	D	Medium
	7.EE. 3	Solve multi-step real-life and mathematical problems posed with positive and negative rational numbers in any form (whole numbers, fractions, and decimals), using tools strategically. Apply properties of operations to calculate with numbers in any form; convert between forms as appropriate; and assess the reasonableness of answers using mental computation and estimation strategies. For example: If a woman making $\$ 25$ an hour gets a 10% raise, she will make an additional $1 / 10$ of her salary an hour, or $\$ 2.50$, for a new salary of $\$ 250$. If you want to place a towel bar $93 / 4$ inches long in the center of a door that is $271 / 2$ inches wide, you will need to place the bar about 9 inches from each edge; this estimate can be used as a check on the exact computation.	D	Low
	8.EE. 3	Use numbers expressed in the form of a single digit times an integer power of 10 to estimate very large or very small quantities, and to express how many times as much one is than the other. For example, estimate the population of the United States as $3 \times 10^{\wedge} 8$ and the population of the world as $7 \times 10^{\wedge} 9$, and determine that the world population is more than 20 times larger.	D	Low
	7.EE. 4	Use variables to represent quantities in a real-world or mathematical problem, and construct simple equations and inequalities to solve problems by reasoning about the quantities. (7.EE.4a, 7.EE.4.b)	D	High
	8.EE. 5	Graph proportional relationships, interpreting the unit rate as the slope of the graph. Compare two different proportional relationships represented in different ways. For example, compare a distance-time graph to a distance-time equation to determine which of two moving objects has greater speed.	D	Low
	8.EE. 8	Analyze and solve pairs of simultaneous linear equations. (8.EE.8.a, 8.EE.8.b, 8.EE.8.c)	D	Low

	STANDARD	STANDARD DESCRIPTION	AE-CCR LEVEL	TABE $11 / 12$ EMPHASIS LEVEL
	7.RP. 1	Compute unit rates associated with ratios of fractions, including ratios of lengths, areas and other quantities measured in like or different units. For example, if a person walks $1 / 2$ mile in each $1 / 4$ hour, compute the unit rate as the complex fraction $1 / 2 / 1 / 4$ miles per hour, equivalently 2 miles per hour.	D	Low
	7.RP. 2	Recognize and represent proportional relationships between quantities. (7.RP.2.a, 7.RP.2.b, 7.RP.2.c, 7.RP.2.d)	D	High
	6.RP. 3	Use ratio and rate reasoning to solve real-world and mathematical problems, e.g., by reasoning about tables of equivalent ratios, tape diagrams, double number line diagrams, or equations. (6.RP.3a, 6.RP.3.b, 6.RP.3.c, 6.RP.3.d)	D	Medium
	7.RP. 3	Use proportional relationships to solve multistep ratio and percent problems. Examples: simple interest, tax, markups and markdowns, gratuities and commissions, fees, percent increase and decrease, percent error.	D	Low

$\left.\begin{array}{l|l|l|l|l|} & \text { STANDARD } & & \begin{array}{l}\text { SABE } 11 / 12 \\ \text { STANDARD DESCRIPTION }\end{array} \\ \hline & \begin{array}{l}\text { Understand that positive and negative numbers are used together to describe quantities } \\ \text { having opposite directions or values (e.g., temperature above/below zero, elevation } \\ \text { above/below sea level, credits/debits, positive/negative electric charge); use positive } \\ \text { and negative numbers to represent quantities in real-world contexts, explaining the } \\ \text { meaning of 0 in each situation. }\end{array} & \text { D } & & \text { Medium } \\ \text { EMPHASIS } \\ \text { LEVEL }\end{array}\right]$

	STANDARD		STANDARD DESCRIPTION	AE-CCR LEVEL
EMPE $11 / 12$				
EMASIS				
LEVEL				

